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Spatial Separation of Events in S-Matrix Theory* 
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Just as the derivative of the argument of the S matrix with respect to energy gives a time interval for 
events, it is shown that the corresponding derivative with respect to momentum transfer gives a space 
interval. This space interval corresponds to the classical impact parameter in the classical limit. More 
generally, it is suggested that these two derivatives may provide a basis for introducing space-time intervals 
into physical theory. 

be defined, and in general provides a definition for the 
impact parameter. In a manner analogous to that used 
for denning the time interval for a sequence of events, 
this impact parameter provides a means of constructing 
a trajectory for a particle undergoing a sequence of 
scatterings. 

These, and the earlier considerations of time interval, 
suggest that a complete but coarse-grained description 
of space and time intervals may be derived in S-matrix 
theory, rather than postulated—as in conventional field 
theory. 

II. WAVE-PACKET DESCRIPTION OF 
THE SCATTERING 

For simplicity of discussion we restrict ourselves to 
the scattering of a simple spinless particle by a massive 
scatterer located at the origin of a given coordinate 
system. More complicated and physically interesting 
interactions would seem to involve complication of 
detail rather than of principle. The interaction and its 
observation involve directing a wave packet toward 
the scatterer at some initial time t= — To and observing 
it at some later time T, as is illustrated in Fig. 1. We 
suppose that at both times (—T0) and T the wave 
packet is far from the scatterer. In the spirit of ^-matrix 
theory we can assume that we know the wave function 
for the particle only at such times that it is far from 
the scatterer. 

The wave function of the incident particle prior to 
interaction will be of the form 

*(x,/)= (27r)-3'2 e x p p ( p . x - e ^ ) ] ^ ( x - V o O , (1) 

where p, v0, and ep are, respectively, the initial momen
tum, velocity, and energy of the particle. The wave-
packet amplitude 

G W = C ( W ) (2) 

is so constructed that at t=0 the packet is centered on 
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I. INTRODUCTION 

DURING the past few years there has been consider
able interest in the possibility of replacing the 

ordinary dynamical description of physical systems via 
a Schrodinger equation by an 5-matrix theory. The 
principal objection to the conventional theory is that 
it tells one rather more than he wants to know about a 
physical system; more precisely, it forces discussion of 
things that do not seem observable. One aspect of this 
problem that has been recently discussed is the notion 
of time interval in an .S-matrix theory.1 The idea was 
proposed that the S matrix, although superficially 
involving only information about the state of a system 
over long time intervals, does, in fact, provide a kind 
of coarse-grained definition of time interval. In a 
complex process, involving a sequence of operations, 
one can define a sequence of time intervals only to the 
extent that the S matrix for the entire event factors into 
a product of S matrices. When this is possible, a time 
label can be defined that involves only S-matrix (i.e., 
on energy shell) quantities. A dynamical principle may 
then be formulated from the S matrix for describing 
the change with time of physical systems. 

I t is natural to ask whether any analogous consider
ations apply for the definition of the spatial separation 
of events in an 5-matrix theory. Such a description 
would evidently be "coarse grained," as was that for 
time intervals, and much more restrictive than the 
notion of a space-time continuum inherent in conven
tional field theory. 

We shall see that a spatial separation for two inter
acting particles may indeed be defined in terms of the 
partial derivative of S with respect to the scattering 
angle. This quantity reduces to the classical impact 
parameter in the limit that a classical trajectory may 

* This work was prepared under the auspices of the U. S. Atomic 
Energy Commission and a contract from the U. S. Air Force. 

t Presently on leave at the Massachusetts Institute of 
Technology. 

1 M. L. Goldberger and K. M. Watson, Phys. Rev. 127, 2284 
(1962). 
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the scatterer at x = 0 . More precisely, we write 

/ ^ x | G ( x ) | 2 = 0 . (3) 

The envelope G is assumed to have a spatial extent 
characterized by a length W. I t is assumed to be 
"reasonably smooth" in the sense that its Fourier 
transform a(l), in 

C(; » - / dH eil-*a(l), (4) 

is characterized by a "width" W~l in momentum space. 
The width W is conveniently chosen large enough that 
spreading of the wave packet is negligible by the time 
it reaches the detector.2 We shall also assume that over 
the momentum interval W~l the 5 matrix, energy, and 
scattering amplitude are very nearly constant. 

The wave function (1) may, with the assumptions 
just made, be written as 

<t>(x,t) = (2TT)-3/2 / dh exp[>'(ic- x - eKt)~]a{v.- p) . (5) 

The momentum p is taken to be the mean momentum 
of the incident packet: 

- / 
dsK\:\a(K— p ) | (6) 

The complete wave function for the scattering event 
is then 

* ( * :,*)= jd^K
+ 

(x)e~it,lta(K—p). (7) 

Here \pK
+ is the steady-state wave function having the 

asymptotic form 

^ + ( x ) = (27r)-z/2iexp(iK'X)+(eiliX/x)f(Ky £ •£ ) ] , (8) 

as x —•> oo. The quantity /(/c, x • K) is the amplitude for 
scattering from the initial direction K to a final direction 
x. The relation of / to the S matrix is described by the 
equations 

5 K ' K = 5 ( K / — K ) — 2Trib(eK> — eK)TK>K (9) 
and 

r^ K =-[ /c / (27r) 2
P e ] / ( /c / . /c) , (10) 

where 
p€ = K*/(deK/dK). (11) 

The separation X between the packet and scatterer is 
certainly observable, to within an accuracy of order W 

2 See, for example, M. L. Goldberger and K. M. Watson, 
Collision Theory (John Wiley & Sons, Inc., New York, 1963), 
Chap. III . When the wave packet has traveled a distance L to 
the detector, its amplitude will have been distorted to the form 

where M is the mass of the particle. 

FIG. 1. Illustration 
of wave-packet scat
tering. 

<2 
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so long as X^>W. The lower limit obtainable on W is 
determined from the properties of the interaction and 
the requirement of negligible spreading. The question 
that concerns us is whether the asymptotic wave 
functions alone (or the S matrix) permit one to describe 
the spatial separation of the particle and scattering 
center during the interaction. 

To investigate this, we first use Eqs. (7) and (8) to 
write the asymptotic scattered wave as 

lMx,0 

exp[i(KX— €Kt)l 
= (2TT)-3/2 / dh / M - / c ) a ( K - p ) . (12) 

The complex scattering amplitude may evidently be 
written in the form 

/ (K, X'K) = R(K,X'K) exppx(*, £ •£) ] , (13) 

where R and x are real. 
Now, by our assumption that / varies little over the 

momentum interval W~l, we may take 

and 

(14) 

/ (* , x-k) = f(p, x -p) exp (1 • Vp IILRO) exp (il • VPXQ) (15) 

in the integrand in (12). Here 

1=K— p 

and 
Ro=R(p,x-p) 

xo=x(M-£). 

(16) 

The factor exp(l- Vp \nR0) in (15) leads to a distortion 
in the shape of the scattered wave packet. This is not 
of interest to us now, so we suppose it to be absorbed 
into the definition of the amplitude function a in Eq. 
(12). The second factor, exp (il- Vp%o), leads to a 
displacement of the packet and does concern us. Indeed, 
on inserting the expressions (14) and (15) into (12), 
we find 

expri(px—ej)l 
lMx,* )= ( 2 T T ) - 3 / 2 — f{p^P) 

X 

XG\j(x-v,t)+VpXa]. (17) 



2822 F R O I S S A R T , G O L D B E R G E R , A N D W A T S O N 

and to call 

FIG. 2. Illustration 
of the vectors p and 
Do. 

Here Yo=pvo=ypep is the velocity of the incident 
particle. 

For the validity of Eq. (17) we require that 

VP%(T+T0)«W*, 

VP
2Xo«W*, 

which are conditions placed on the wave packet.2 

To give Eq. (17) a physical interpretation, we 
introduce 

as a variable, and write 

VPxo= Vo.(dxo/dcP)+ (x-X-pp) (dxo/pdu). (18) 

I t is natural to call dxo/dep a "time delay," 

rd= (dXo/dep) = (d argf/dep), (19) 

D 0 = (x-x-pp) (dxo/pdu) (20) 
= (x-x-pp) (d argf/pdu) 

a "space shift." I t may be noted that D0 is perpendicular 
to the incident direction p. 

The wave-packet amplitude in Eq. (17) has then the 
form 

G = G { ^ - » o ( / ~ r d ) ] + D o } . (21) 

If, for example, the scattering lies in the x—z plane of 
a rectangular coordinate system, with p directed along 
the z axis, we may write this in the notation of Eq. (2) 
as 

G=G[Z>o,0,*-i>o(*-Td)]. (22) 

Equation (22) has a direct physical interpretation. 
Particles scattered into the direction x tend to be 
displaced off the z axis by a distance Do. This is illus
trated in Fig. 2, where a "classical" trajectory is drawn. 
The displacement Do is seen in this case to correspond 
to the classical impact parameter. 

These considerations permit us to give a strictly 
quantum-mechanical definition of the impact parameter 
for a collision. In addition, we can define & distance of 
closest approach as the vector 

9 = p p cos(d/2)-p> sin(0/2)], (23) 

where i is a unit vector parallel to the x axis, 6 is the 
scattering angle (cosd=x-p), and 

p=2 sm(6/2) (dxo/pdu) 
^Z2sin(d/2)/p2(d3iVgf/du). 

(24) 

The expression (19) is a direct generalization of the 
Wigner-Eisenbud3 time delay for scattering in pure 
eigenstates of the S matrix. The quantity ra evidently 
corresponds to a delay in the arrival of the packet at 
the detector. Its significance for the present consider
ations was discussed in Ref. 1. 

We see from Eqs. (21) and (22) that a meaning can 
be given to the term "spatial separation" of two inter
acting particles. In the next section we give a different, 
and more direct, calculation of this quantity. 

III. DIRECT CALCULATION OF POSITION 
OF THE WAVE PACKET 

We discuss once again the same scattering event 
that was described in Sec. II , but now calculate directly 
the center of mass of the packet. 

If there were no scattering, the wave function (5) 
would describe the packet motion. Its mean initial 
position at the time t== — To is then 

edzxx\<t>(xy - T o ) | 2 (25) 

In the absence of scattering, and at the time T, the 
mean position of the packet is 

(26) X0(T)= / ^ x | ^ . ( x , r ) | 2 . 

When scattering occurs we must use the wave 
function (7) to find the packet location. At the time 
T= — To this is 

<Pxx\f(x,-T0)\ (27) 

Since (— T0) was chosen as a time long before scattering 
occurred, we will have 

or 
,Kx,-ro)=0(x,-ro), 

Xo=Xo°. 

(28) 

To find the position of the scattered wave packet at 
time T for those particles scattered into the direction 
x, we introduce a projection operator A(x) onto those 
plane-wave states corresponding to momentum vectors 
parallel to x and lying in the small increment 5Q(x) of 
solid angle. The required mean coordinate of the wave 
packet is then 

where 

X(T) = - ld*xx\A(x)xP(x,T)\z, (29) 
NJ 

iVs / d*x\k(x)yp(x,T)\K (30) 

3 E. P. Wigner, Phys. Rev. 98, 145 (1955), and L. Eisenbud, 
Ph.D. thesis, Princeton University, 1948 (unpublished). 
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The displacement due to scattering is Since VKeK is the velocity of the particle when its 
A v _ r v / T \ v n rvo/T\ v m momentum is K, we may use Eq. (6) to write the first 

AX=LA(r)~ x0j-[x (T)- x0 ] ( } . E (36) 

= X(r)-x°(r). K } 4 

I t will be convenient and will involve no serious loss of j - / (pK(y e\ | #(K— p) 12= \0T (38) 
generality to suppose that x is so directed that the J 
waves scattered to the detector do not overlap the 
nonscattered waves in the incident packet. w h e re v0 is the incident velocity of the packet [see 

The quantities (27) and (29) do not, of course, Eq. (1)]. On transforming the second term to coordinate 
exhaust the averages that may be evaluated for a space, we then have 
description of the "partides orbit." For example, higher 
moments may also be found by the method described X ° ( D = v T-\- I d?% x\<t>(x 0) I2 (39) 
here. J 

To calculate the expressions (25) and (26), we shall 
use Eq. (5) for (j)(x,t). For the expression (29) we shall = yoT, 
find it convenient to write ^(x.J1) in the form4 . r , ,. . . . . 

because of the condition (3). 
r r We next simplify Eq. (30) for N. Using Eq. (32), we 

\f/(x,T) = (2ir)~m / d V / dzK may write this as 

Xexpp(* ' • x - € , / r ) ! l W ( i c - P), (32) N= (2TT)-3 / d*x f dW fdW 
J J x J x 

where SK'K is the S-matrix element (9). 
Let us first evaluate X°(T), Eq. (26). Using Eq. (5), j f 

X°(T)= (2TT)-3 / d*x x j dhidh* 
X | / dh2exY>\j(K2'^-~€K2

fT)'}SK,/^a(K2~v) 

Xexp{i[ (K 2 - KI) • x - (eK2— eKl)T2) 

X a * ( « r P M K 2 - p ) . (33) = [d*K' [dh^a*^-jfiF^S^fa-p). (40) 
If we define J x J 

K 2 = K + | 1 (34) 
a n j Here Jhdsn' • • • denotes an integral over K' with the 

K l = = K _ i I direction K' restricted to the solid angle 50(£), as 
we may write implied by the projection operator A(x) in Eqs. (29) 

x = (l/i)Vz (35) an<^ (^0). Because w e n a v e assumed that waves 
scattered in the direction x, do not overlap the incident 

in the integrand of Eq. (33). Then, after performing a packet at time T [this implies that a(Kx-p) is negligibly 
partial integration, we find small], the 6-function terms do not contribute, and N 

reduces to 

X°(T) = / dzx \ <PK!(PK2{ (2TT)~3 e x p p ( K 2 - KO • x]} -
J J N= (2TY dV d'K1dh28(eKf-eKM^-eK2)T^KfK1T^K, 

X{-(l/i)V[.exp(-ihVKeKT)l X a * ( K i - p ) a ( i c 2 - p ) . ( 4 1 ) 

X [ a * ( K - ~ J l - p ) a ( K + | l ~ p ) ] } T h e a s s u m p t i o n t h a t TK,K2 a n d T*K,KI a r e essentially 
constant over the packet now permits us to write this as 

N=(27r)2pM(x)\Tkp\^ • / • 
= / m | a(K-p) |*r(V,€«) 

+• ̂ ( K - p j V . a d c - p ) ] . (36) f 
2 J X / <PKV 

Here we have used the notation 

/ V ^ / ( V £ ) - £ V / . (37) 

.ddK28(eK1— € K 2 ) ^ * ( K I — p)a(K2— p) , (42) 

where 
k=p£ (43) 

*The scattering is long since past at the time T, we recall. i s t h e momentum of the scattered particle and pe is 
(See, for example, Ref. 2, Chap. V.) the expression (11), now evaluated at n=p. 
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Let us next substitute 

5(6, 1 ~€ K 2 )=(27T)- 1 / dtexp[i(eK1-eK2)f] (44) 

into Eq. (42) and use Eq. (10) to obtain 

k2 r+* 

Now, 

N=-8m\f(p,*-p)\2 dt\<t>(0,t)\K (45) NX(T) = vfTN 
Pe J — 00 

Were we to set , S 7 K 2 = 5 ( K ' — K 2 ) and S ^ ^ ^ K ' — K I ) 
and integrate over all K', this would agree with Eq. 
(36)—as it should, because in the absence of scattering 
AX=0. 

Since dti(x) is very small, we may factor (VK'tK>)T 
— Y/T, where V/=z>o#, out of the integrand of the first 
term in Eq. (50) and rewrite this as 

d*$-+£)=\f(p,*.p)\*M(£) 

is the differential scattering cross section, and 

k2 r+™ 
F0 ^|4>(0,/)|2 

(45) 

(46) 

(47) 

+-
X V [ a ( K 2 - p ) S ^ 2 ] . (51) 

is the flux of particles (per incident particle) on the 
scattering center. Thus, we finally have 

N=d<r(p->£)F0. (48) 

To be strictly consistent, we should have kept the 
first-order variation of T and J * with momentum 
[as in Eq. (15)] in Eq. (42). This would have led to a 
flux (47) evaluated at the displaced position D0 [Eq. 
(20)]. Since this correction does not affect our results, 
we have avoided the algebraic complication of including 
it here. 

We turn next to the evaluation of the quantity 
[see Eq. (29)] 

[Compare Eq. (51) to the final form of Eq. (40).] 
The leading term for large T in X(T) is just \fT, as 

would be expected from elementary kinematical con
siderations. The second term on the right in Eq. (51) is 
independent of T and corresponds to a displacement of 
the particle trajectory. 

To simplify this term we substitute the expression 
(9) for the S matrix and again use the condition that 
a(px—p)«0 to write 

N[X(T)-vfT-] 

-2<w 
' / . " / • 

d3Kid3K2a* (KI— p)o(K2— p) 

X{[5 (^ -«« 1 ) ^ ' « 1 ]V ( t - [5 (^ - e« 2 ) r i [ - I I 2 ] } . 

= I d?xx . 

NX(T)= / < 2 3 * x | A ( ^ ( x , r ) | 2 

x f dW f dW 
J x J 'x 

dhi exp^K/- x—€K 1T)5X 1
/ ,1(Z(KI—p) 

: / dh2 expi(K2'- x— eK2'T)SK2'K2a(K2— p) , 

(49) 

Now, 

V^[rK'K25(eK/~€K2)] 

(52) 

:5(€K'—€V2)(vK/rK^2) 

/ v'v2 \ 
d(eK>-eK2), 

X 

etc., where v r = VK/€K' = V/. This permits us to put Eq. 
(52) into the form 

which, of course, differs from the first form of Eq. (40) 
only by the factor x in the integrand. This expression 
may be simplified by introducing the variables (34) 
and using Eq. (35) for x. The steps leading to Eq. (36) 
now give 

NX(T)= l dhf Id^dh2 

X{(V K , € ,Ora* (Ki -p )^^A 'K 2 a (K 2 -p ) 

N[X(T)-vfTl 

= -(2>ir)2pe8Q,(x) / dzKXdzK2b{eK1-,) 

xa*(K1-p)a(K2-p)[rv,(v^+#-v,)r^K]|^fc(K=3p 

+ terms that vanish for small 1/W. (53) 

(The neglected terms here involve gradients of the a's 
and thus depend on wave-packet characteristics. When 
1/W is small enough that we can set Vi~v 2 «v 0 , these 
terms vanish.) 

To further simplify Eq. (53), we use Eq. (10) and 
A_r/o\r */ \o* - i ^ r e / \-i* Eqs. (44) and (47) to obtain 
+ (v2)[a*(Ki-p)S* c^ 1 ] V K , [S^ 2 a (K 2 -p ) ]} . H v J v J 

(50) N[X{T)-V/r]= -N{Vk+xp- Vp) a r g / f e x-p). (54) 
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Now, 

• (yh+Ap- Vp) arg/(fc x-p) = -TdV/H-D/, (55) 

where r<* is the time delay (19) and 

D / S — (fi—XX'p) (d SiYgf/pdu) , (56) 

and u=x-p as in Eq. (18). Finally, we use Eqs. (39) 
and (54) to write Eq. (30) as 

X(T) = yf(T-Td)+Bfj (57) 
or 

A X = v y ( r - r d ) - v 0 r + D / . (58) 

The interpretation of these expressions is similar to 
that given in Sec. I I of Eq. (22). The scattered wave 
packet is delayed by a time ra and displaced a distance 
D/, which lies in the plane of the scattering and is 
perpendicular to the direction x. This is illustrated in 
Fig. 3, where Eqs. (20) and (57) are used to define a 
"trajectory" for the particle. 

Referring to Fig. 3, we see that if the scattering had 
"actually occurred" at 0 , the point X ( r ) would have 
been at P. Because the scattering is displaced by the 
distance Q [see Eq. (23)], the point X(T) is displaced 
by a distance Df perpendicular to the line OP, The 
displacement of the incident orbit is D0 [see Eq. (20)]. 
We see that 

Df=Do=p cos(0/2), (59) 

and Df is in the direction of the unit vector e, illustrated 
in Fig. 3. 

Our discussion has been quite general to this point 
and certainly consistent with the indeterminacy 
principle. The "trajectory" drawn in Fig. 3 has been 
defined in terms of the mean displacement D0 and D/. 
In the next section we shall evaluate these quantities 
in the classical limit and see that j> does indeed then 
correspond to just the classical distance of closest 
approach. 

Before doing this, let us suppose that the scattering 
interaction illustrated in Fig. 3 is weak and limited to 
small angles 0, and that the orbit may be considered as 
classical. The displacement D0 and D/ are then directly 
interpretable as displacements of the classical trajectory 
from QOP. The time delay n requires discussion, 
however. There are two contributions to T<*. One 
results from the fact that the trajectory RSX is shorter 
than QOP by the line segments aO and bS. Since, this 
length is 2p sin (0/2), we have a purely geometrical 
contribution to r^, 

Tgeom^ - (2p/v0) S m ( 0 / 2 ) . (60) 

The time delay also has a dynamical contribution 
corresponding to the fact that the velocity of the parti
cle is in general different while it is interacting. To 
evaluate this in the classical limit, we suppose that the 
scattering is due to a potential V(r,z), where z is a 
coordinate along p, and r a coordinate along j . Now, 
the velocity v, if the particle has a nonrelativistic 

FIG. 3. Construc
tion of "classical" 
trajectory. 

energy, at (r,z) is given by the equation 

v2+(2/M)V(r,z) = vQ
2, (61) 

where M is the particle mass. Since we have assumed 
that 0 is small and that (2/M) | V | «fl0

2, we obtain 
from Eq. (61) for an impact parameter p 

dzr 
dt~—\ 1+ 

or 

7*dyn = 

V0 L MVQ2 

1 r+°° 

pv0
2 

-V(p,z) 

V(P,z)dz (62) 

for the dynamical contribution to the time delay. The 
total time delay ra is then 

Td = Tdyn+ Tgeom • ( 6 3 ) 

IV. SCATTERING IN THE NEAR-CLASSICAL LIMIT 

Let us evaluate the scattering illustrated in Fig. 3 in 
the WKBJ, or eikonal, approximation for the case of a 
nonrelativistic particle. Then, if the scattering is due to 
a potential V (r,z) and is limited to small angles 0,5 the 
scattering amplitude6 is 

up 
Jo 

rdrJ0(prd)Ze2i8^-l2, (64) 

where J0 is the Bessel function of zero order and 

*(r,p)--
2v0J^ 

dzV(r,z). (65) 

In the near-classical limit we may replace Jo by its 
asymptotic form to write 

1/2 /.oo 

\27T0/ Jo 
rll2dr 

X { e x p p ( ^ 0 - i 7 r ) ] + e x p [ - i ( ^ 0 - j 7 r ) ] } 

X(e2i8-1), (66) 

which may easily be evaluated by a saddle-point 
integration. To do this, we must consider the two 

5 The limitation to small scattering angles is not essential here, 
but simplifies our discussion. 

6 See Ref. 2, Eq. (6-505), for example. 
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integrals 

where 

7±= r^Hre1^ 

<P(r,P) = 28(r,p)±:(prd-i). 

(67) 

(68) 

The stationary phase point at r=po is determined from 
the equations 

28'(p0,p)±pd=0, 

where 8f^d8(r,p)/dr. 

Now, 
1 

*'(r,p) = — f dz\ 
2voJ-^ L 

dV(r,z)-

dr J 

(69) 

(70) 

so 

(71) 

8'(r,p)>0 for a repulsive force (case R ) , 
8f(r,p)<0 for an attractive force (case A). 

We see then that in the present approximation 

f=-i(p/2ic6yi*I±, 

where the plus sign corresponds to case A and the 
minus sign to case R. Evaluation of I± gives 

/ = - i (ppo/ 10O" | )We±H*ei4xr- y c a S e R 

/ = - i ( ^ P o / | 0 o / , i ) 1 / 2 « ± i i V * o + , case A, (72) 

where <^o±^<^±(po,^) and (/></'=<£"(po,^). The plus sign 
in Eqs. (72) is to be used when </>o"> 1, the minus sign 
f o r 0 o " < l . 

Using Eqs. (24) and (72), we find the impact parame
ter p to be 

p=po, case R , 
= — po, case A, 

(73) 

in agreement with our anticipations. 
The time delay (17) is evaluated from Eqs. (72) as 

1 d8 poS 
Trf = 2 zb 

ô dp VQ 

— f +
0 0 Pod 

dzV(p0,z)±— (74) 

by using Eq. (65). For case R and small 6 (minus sign), 
this is seen to agree precisely with Eqs. (60), (62), and 
(63). 

V. AN ALTERNATIVE REPRESENTATION 

We have considered the scattering amplitude to be 
a function of eP and u—£-p, and have shown that the 

derivatives (19) and (24) of arg / with respect to these 
variables have a simple geometrical interpretation. If 
one considers / to be a function of the variables7 

s=2Mep, 

t= — 2s(l—u), 
(75) 

rather than of ep and u, the partial derivatives of 
arg f(s,t) may be given a dynamical interpretation. 

To see this, let us first generalize the definition (62) 
for rdyn, writing 

Tdyn^3 3 Td Tgeom > (76) 

where Td is defined by Eq. (19) and rgeom by Eq. (60). 
An elementary calculation then gives 

2(s) 
r d arg/(s,0 

l /2_ 

dt 2 sin (0/2) 

where p is defined by Eq. (24), and 

d arg/(j ,0 
2M = T c = T d y n . 

ds 

(77) 

(78) 

Here rayn is defined by Eq. (76). 
We call the quantity rc the "causal time delay." 

Equation (62) suggests that this has a more direct 
dynamical significance than does Td. 

VI. CONSTRUCTION OF A TRAJECTORY 

In Ref. 1 it was observed that for a sequence of 
scatterings, or in the quasi-classical limit, for which the 
S matrix factors into a product of S matrices, the time 
delay Td permits one to attach a coarse-grained time 
label to points on the trajectory. In a similar manner 
we can use Eqs. (23) and (24) to construct an "orbit" 
in coordinate space for the scattered particle. That is, 
when 

where Si is an S matrix for the ith scattering, we may 
define a sequence Qi of displacement parameters. A 
path formed by line segments between this sequence 
of vectors provides the required "orbit." I t is evident 
that in the classical limit this orbit will coincide with 
the classical trajectory. 

We have seen that the S matrix may provide a basis 
for defining space-time intervals for events. The extent 
to which it may provide a general and satisfactory 
definition of space-time intervals is not presently clear. 

7 A relativistic generalization is evidently straightforward. 


